The Surveillance Lab
E-Health Interventions in Public Health
 

Software Used

 
 
E-Health Interventions in Public Health

We all use information to make decisions. In our daily life, we have seen remarkable gains in the ease with which we can access information. Unfortunately, similar advances in information access have not occurred in public health practice, where it is often difficult to access necessary information. There is a huge potential benefit to society if we can develop and evaluate software to help people make better decisions about preventing chronic diseases, detecting infectious disease outbreaks, and planning the delivery of public health services. This research program will develop and evaluate innovative strategies that use modern computing to improve decisions about important public health problems.


Funded By

 

In Collaboration With

 
The Surveillance Lab
Surveillance of Vaccination Opinions and Beliefs in Online Media
 

 
Surveillance of Vaccination Opinions and Beliefs in Online Media

The goal of this project is to develop methods for public health surveillance of opinions and beliefs about vaccination expressed in online media. In particular, we intend to automate the detection and classification of comments about the safety and effectiveness of vaccines. To develop these methods we are using a large sample of media reports from HealthMap’s Vaccine Intelligence Surveillance System. The automated methods will be evaluated against manual classification of the same reports. As we develop and evaluate our methods, we are also performing descriptive analyses to understand how the frequency of media reports containing comments about vaccines changes over time and space. This work will provide evidence to guide the use of online media surveillance and monitor vaccine opinions and beliefs.

 


Funded By

 

In Collaboration With

 
The Surveillance Lab
PopHR
 

Software Used

 
 
PopHR

The Population Health Record (PopHR) is an informatics platform that uses existing epidemiological and public health knowledge to integrate multiple clinical and administrative data sources to provide a coherent view of the health of populations. Users of the PopHR can develop detailed portraits of the health status and healthcare utilization patterns for a population, monitor various health indicators to detect temporal and spatial variations in disease activity, and evaluate the effectiveness of interventions on population health. The platform provides representative information in near-real time with high geographical resolution, thereby assisting public health professionals, clinicians and the public in diagnostic and therapeutic decision-making. At the same time, the PopHR provides a platform for advancing research in public health informatics and disease surveillance.

*The views expressed herein do not necessarily represent the views of the Public Health Agency of Canada.


Funded By

 
The Surveillance Lab
Opioid Overdose
 

 
Opioid Overdose

The use of illegal drugs imposes a devastating cost on Canadians, both in terms of lives lost and dollars spent. The rate of prescribing opioids, in particular, has increased close to one hundred-fold since 2000 and more Canadians are now dying of accidental overdoses from POs than from street drugs such as heroin and cocaine. Prevention efforts are needed urgently, but detecting individuals likely to experience a PO overdose is currently difficult. The goal of this project is to identify personal characteristics and patterns of healthcare use associated with unintentional death from PO overdose. We will use health data from multiple sources, including the Coroner’s Office, hospital records and drug prescribing databases, to identify characteristics of PO abusers who are likely to die from an accidental overdose. This information should allow public health policy-makers to optimize treatment services and harm reduction efforts.

 


Funded By

 
The Surveillance Lab
Scalable Data Integration for Disease Surveillance (SDIDS)
 

Software Used

 
 
Scalable Data Integration for Disease Surveillance (SDIDS)

Data for global disease surveillance are fragmented across diseases, countries, funders, and a wide range of clinical settings. This fragmentation of data makes it challenging to assess population health, target disease control activities, and evaluate the effect of interventions. We are developing the SDIDS software platform to integrate surveillance data and make them available to support global health decision making. A proof-of-concept version of the system has been to integrate malaria surveillance data for Uganda. SDIDS makes extensive use of ontologies, including an ontology of data sources and an ontology of global health. Raw data sources are mapped to these ontologies and then automatically translated into a common format, where the integrated data can then be accessed by software to calculate and visualize a variety of indicators. We are now in the process of scaling-up SDIDS to include data for the main causes of under-five mortality in Africa.

In Collaboration with the Uganda Malaria Surveillance Project and the National Malaria Control Programme.


Funded By

 

In Collaboration With

 
The Surveillance Lab
GI Project

Reviews of the public health response to historical outbreaks of GI illness call consistently for improvements to the public health surveillance. There is not sufficient evidence, however, to determine the effectiveness of specific changes to the existing surveillance infrastructure. The goal of the project is to evaluate empirically how enhancements to public health surveillance systems will impact the effectiveness of these systems in detecting waterborne enteric disease outbreaks.